Skip to content

genopt⚓︎

Non-Gaussian generalisation of EnOpt.

GenOpt ⚓︎

Bases: Optimize

__init__(fun, x, args, jac, jac_mut, corr_adapt=None, bounds=None, **options) ⚓︎

Parameters:

Name Type Description Default
fun callable

objective function

required
x ndarray

Initial state

required
args tuple

Initial covariance

required
jac callable

Gradient function

required
jac_mut callable

Mutation gradient function

required
corr_adapt callable

Function for correalation matrix adaption

None
bounds list

(min, max) pairs for each element in x. None is used to specify no bound.

None
options dict

Optimization options

{}

calc_update() ⚓︎

Update using steepest descent method with ensemble gradients