cma⚓︎
Covariance matrix adaptation (CMA).
CMA
⚓︎
    
__call__(cov, step, X, J)
⚓︎
    Performs the CMA update.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| cov | array_like, of shape (d, d) | Current covariance or correlation matrix. | required | 
| step | array_like, of shape (d,) | New step of control vector. Used to update the evolution path. | required | 
| X | array_like, of shape (n, d) | Control ensemble of size n. | required | 
| J | array_like, of shape (n,) | Objective ensemble of size n. | required | 
Returns:
| Name | Type | Description | 
|---|---|---|
| out | array_like, of shape (d, d) | CMA updated covariance (correlation) matrix. | 
__init__(ne, dim, alpha_mu=None, n_mu=None, alpha_1=None, alpha_c=None, corr_update=False, equal_weights=True)
⚓︎
    This is a rather simple simple CMA class hansen2006.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| ne | int | Ensemble size | required | 
| dim | int | Dimensions of control vector | required | 
| alpha_mu | float | Learning rate for rank-mu update. If None, value proposed in [1] is used. | None | 
| n_mu | int, `n_mu < ne` | Number of best samples of ne, to be used for rank-mu update. Default is int(ne/2). | None | 
| alpha_1 | float | Learning rate fro rank-one update. If None, value proposed in [1] is used. | None | 
| alpha_c | float | Parameter (inverse if backwards time horizen)for evolution path update in the rank-one update. See [1] for more info. If None, value proposed in [1] is used. | None | 
| corr_update | bool | If True, CMA is used to update a correlation matrix. Default is False. | False | 
| equal_weights | bool | If True, all n_mu members are assign equal weighting,  | True |